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A new conical ring element to be used in connection with the finite element
method (FEM) is developed, which considers the effects of slight local deviations
from an axisymmetric ring. To develop the proposed finite element, the
displacements of a point in the ring element are assumed by a pair of the natural
modes of a ring with local deviation: symmetric and asymmetric modes. By using
the presented finite elements, a FEM program is also developed to analyze free
vibrations of a nearly axisymmetric shell structure. The developed program is
applied to a vibration analysis of a Korean bell as an example, which shows that
the program is very efficient and saves much computation time for shell structures
slightly deviating from axisymmetry compared to commercial FEM codes.
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1. INTRODUCTION

The vibration analysis of shell structures slightly deviating from perfect
axisymmetry is an interesting topic in engineering. For example, slight deviation
has aroused great concern in vibration and acoustic analyses of nearly
axisymmetric asian bells. It has been shown in investigations that the local
deviation causes the bells to have the beat phenomenon which is a unique feature
compared to western bells. Other applications of the nearly axisymmetric shell
structures can be found in welded cylinders, pressure vessels, tires and so on.

The influence of structural imperfection on thin-walled structures was
introduced in the recently published book by Godoy [1]. The main idea behind
his presentation is that small imperfections may introduce changes in the stresses
due to the loads. Godoy et al. [2, 3] also studied the behavior of cylinders with
imperfections and investigated the interaction between geometric and intrinsic
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imperfections. On the other hand, many studies have been performed on rings with
slight deviation from axisymmetry. Allaei et al. [4] studied natural frequencies and
mode shapes of a circular ring when the ring is non-axisymmetric due to a mass
or stiffness non-uniformity. They also studied natural frequencies and modes of
a ring deviating from axisymmetry due to multiple radial springs by using the
natural frequencies and modes of the axisymmetric ring [5]. Rossi [6] investigated
the in-plane vibrations of a circular ring with a non-uniform cross-section: the
natural frequencies and modes were obtained by using the constant-curvature
beam finite elements developed by Davis et al. [7]. Celep [8] considered the in-plane
vibration of a thin ring on a tensionless Winkler foundation. The analysis is based
on the harmonic approximation, assuming that the ring is subjected to time
dependent in-plane loads. Hong and Lee [9] presented an analytical method to
predict the effects of local deviation on the free in-plane vibration of nearly
axisymmetric rings. The authors used the Laplace transformation for the solution
and the unit step function for the local deviation. They show that, when local
deviation is introduced to an axisymmetric ring, the natural modes are separated
into the symmetric and asymmetric modes. The symmetric mode has the
anti-nodal point at the deviation while the asymmetric mode has the nodal point
at the deviation.

In this study, a finite conical ring element with local deviation is developed and
a finite element method presented to analyze the natural frequencies and modes
of a nearly axisymmetric shell structure with local deviation. The theoretical
foundation is based upon the analytical result of Hong and Lee [9]. Furthermore,
the effectiveness of the present analysis is shown by applying the method to a
Korean bell which is a typical example of a nearly axisymmetric shell structure.

2. CONICAL RING ELEMENT WITH LOCAL DEVIATION

A nearly axisymmetric shell structure with slight deviation is discretized into
ring elements as shown in Figure 1. A series of parallel planes perpendicular to
the axis of revolution intersect the middle surface of the shell structure. The circles
generated by intersection of each plane and the middle surface become the nodal

Figure 1. Construction of elements and nodal circles.
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Figure 2. Geometric specification and displacements in the conical ring element.

circles and an element is bounded by two adjacent nodal circles: element i is
bounded by nodal circles i and i+1. The nodal circle is defined by the radius r
and co-ordinate Y.

The geometric specification, displacements and material properties in a conical
ring element are shown in Figure 2. The conical ring element is specified by the
thickness h, average radius R, slope angle f and the length of the side L. The
position of a point in the middle surface of an element is defined by the local
meridian coordinate s and the co-ordinate u. The deviated portion is assumed to
be located along Du and its thickness is ha .

3. DISPLACEMENTS IN THE CONICAL RING ELEMENT

The displacements can be described in either the local co-ordinate or global
co-ordinate system: u, v and w are the meridian, circumferential and normal
displacements in the local co-ordinate system, respectively, while ū, v and w̄ are
the axial, circumferential and radial displacements in the global co-ordinate
system, respectively. Figure 2 shows the displacements defined in the above.

Consider the displacements at a point on the middle surface of an element. Since
the meridian, circumferential and normal displacements, u, v and w, are periodic
with respect to u with a period of 2p, they can be expressed in terms of the Fourier
series in the u co-ordinate:

u=U0 + s
n

j=1

Uj cos ju+ s
n

j=1

U� j sin ju, v=V0 + s
n

j=1

Vj cos ju+ s
n

j=1

V� j sin ju,

(1, 2)

w=W0 + s
n

j=1

Wj cos ju+ s
n

j=1

W� j sin ju, (3)
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where Uj , Vj , Wj , U� j , V� j and W� j for j=1, 2, . . . , n are functions of the local
co-ordinate s. Denoting b as rotation of the meridian, b in the case of the conical
ring element can be described as

b=−1w/1s (4)

Since the heights of the elements are generally small, the meridian contributions
of the displacements may be approximated by simple polynomial functions of the
meridian co-ordinate s. In this study, linear functions are assumed for the meridian
and circumferential displacements and cubic functions are assumed for the normal
displacement. That is, Uj , U� j , Vj and V� j are approximated by linear functions while
Wj and W� j are approximated by cubic functions:

Uj = a1j + a2js, U� j = ā1j + ā2js, Vj = a3j + a4js, V� j = ā3j + ā4js, (5–8)

Wj = a5j + a6js+ a7js2 + a8js3, W� j = ā5j + ā6js+ ā7js2 + ā8js3. (9, 10)

It is assumed in this paper that the mode shapes of the ring element with slight
asymmetry are known. As mentioned in the Introduction, Hong and Lee [9]
showed that due to local deviation a ring has the natural modes which can be
separated into symmetric and asymmetric modes. Local deviation is located on an
anti-nodal point of the symmetric mode while it is located on a nodal point of the
asymmetric mode. This means that, for each harmonic number j, the asymmetric
mode shape rotates with p/2j from the symmetric mode shape. For example, the
asymmetric mode shape rotates with 45° from the symmetric one for j=2. Under
the assumption, the displacements given by equations (1–3) might be replaced with
the mode shapes of the conical ring element with slight deviation in order to derive
the eigenproblem of the nearly axisymmetric shell structure with slight deviation:

u=(a1 + a2s) cos ( ju− pb/2), v=(a3 + a4s) sin ( ju− pb/2), (11, 12)

w=(a5 + a6s+ a7s2 + a8s3) cos ( ju− pb/2), b=−1w/1s, (13, 14)

in which ai ’s for i=1, 2, . . . , 8 are constants to be determined and b is the
parameter related to the symmetric and asymmetric modes. The symmetric mode
corresponds to b=0 while the asymmetric mode corresponds to b=1. In order
to perform the analysis, it is convenient to express the mode shapes of the ring
in a vector matrix equation

u=Hspaa, (15)

where

1 s 0 0 0 0 0 0

0 0 1 s 0 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

u=6u, v, w,
1w
1s7

T

, pa = 0 0 0 0 1 s s2 s3 , (16, 17)

0 0 0 0 0 1 2s 3s2
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Cj (u) 0 0 0

0 Sj (u) 0 0G
G

G

K

k

G
G

G

L

l

a= {a1, a2, a3, a4, a5, a6, a7, a8}T, Hs = 0 0 Cj (u) 0
0 0 0 Cj (u)

(18, 19)

in which

Cj (u)= cos ( ju− pb/2), Sj (u)= sin ( ju− pb/2). (20, 21)

The displacements in the conical ring element can be expressed by the
displacements on the nodal circles that bound the element. At a given value of u,
e.g., u0, the displacement vector u is given by

u=u= u0 =Hs =u= u0paa. (22)

Let ui , vi , wi and (1w/1s)i be the displacements on nodal circle i at u= u0 and let
ui+1, vi+1, wi+1 and (1w/1s)i+1 be the displacements on nodal circle i+1 at u= u0.
Then the nodal displacement vector, at u= u0, can be expressed as

Ue =$Hs =u= u0

0
0

Hs =u= u0%Pa, (23)

where

Ue =6ui , vi , wi , 01w
1s1i

, ui+1, vi+1, wi+1, 01w
1s1i+17

T

, P=$Pa =s=0

Pa =s=L%8×8

(24, 25)

Solving equation (23) for a and substituting a into equation (22), the displacements
in the ring are given by

u=u= u0 =SUe , (26)

where S may be simplified as

S= paP−1, (27)

and S is called the 4×8 displacement interpolation matrix (see the Appendix for
S). Consequently, the displacement vector u corresponding to the mode shape of
the conical ring is represented with respect to the nodal displacement vector Ue :

u=HSSUe (28)

When assembling the element mass and stiffness matrices to those of the global
matrices, the global description is more suitable than the local description;
therefore, the displacements ui , vi , wi , (1w/1s)i , ui+1, vi+1, wi+1 and (1w/1s)i+1 in
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the local co-ordinate system must be transformed to ūi , vi , w̄i , (1w/1s)i , ūi+1, vi+1,
w̄i+1 and (1w/1s)i+1 in the global co-ordinate system (see Figure 2):

U� e =TeUe (29)

where

U� e = {ūi , vi , w̄i , (1w/1s)i , ūi+1, vi+1, w̄i+1,(1w/1s)i+1}T, (30)

cos f 0 −sin f 0 0 0 0 0

0 1 0 0 0 0 0 0

sin f 0 cos f 0 0 0 0 0

0 0 0 1 0 0 0 0
G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

Te = 0 0 0 0 cos f 0 −sin f 0
(31)

0 0 0 0 0 1 0 0

0 0 0 0 sin f 0 cos f 0

0 0 0 0 0 0 0 1

Since Ue =TT
e U� e from equation (29), equation (28) can be rewritten as

u=HSSTT
e U� e (32)

where HSSTT
e is the 4×8 displacement interpolation matrix.

4. RELATIONS BETWEEN THE DISPLACEMENTS, STRAINS AND STRESS
RESULTANTS

Various strain–displacement relationships may be obtained from the
well-known strain–displacement equations of the three-dimensional theory of
elasticity, depending upon the type of shell element employed. This study adopts
the strain–displacement relationships of the Sanders–Koiter theory described by
Morris [10]. In the theory the strains and curvature changes on the middle surface
of the axisymmetric shell are defined by

es = 1u/1s−w 1f/1s, eu =(1/r)(u sin f+ 1v/1u+w cos f), (33, 34)

esu = 1u/r 1u− v sin f/r+ 1v/1s, xs =−(1u/1s) 1f/1s− u 12f/1s2 − 12w/1s2,

(35, 36)

xu =−(u sin f/r) 1f/1s+(cos f/r2) 1v/1u− 12w/r2 1u2 − (sin f/r) 1w/1s, (37)

xsu =−12w/r 1s 1u+(sin f/r2) 1w/1u−(1
4 cos f/r+ 3

4 1f/1s) 1u/r 1u

−(3
4 cos f/r+ 1

4 1f/1s)((sin f/r)v− 1v/1s), (38)

where es , eu and esu are the normal and shear strains at an arbitrary point on the
middle surface; xs and xu are the curvature changes of the middle surface; xsu is
the middle surface twist. Since the conical ring element has a constant value of
f, the derivatives of f with respect to s become zero. Moreover, if it is assumed
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that the heights of the elements are small enough, r in equations (33–38) can be
replaced by the average radius of the conical ring element R. In this case, the
strain–displacement relationships are simplified as follows:

es = 1u/1s, eu =(1/R)(u sin f+ 1v/1u+w cos f), (39, 40)

esu = 1u/R 1u− v sin f/R+ 1v/1s, (41)

xs =−12w/1s2, xu =(cos f/R2) 1v/1u− 12w/R2 1u2 − (sin f/R) 1w/1s,
(42, 43)

xsu =−12w/R 1s 1u+(sin f/R2) 1w/1u− 1
4(cos f/R2) 1u/1u

− 3
4(cos f/R)((sin f/R)v− 1v/1s). (44)

In order that the strains are expressed with respect to the nodal displacements,
it is required that equations (39–44) should be written in a matrix vector equation
and then equation (32) should be substituted into the equation. In this case, the
strain vector can be expressed as

e=HBBTT
e U� , (45)

where

e= {es , eu , esu , xs , xu , xsu}T (46)

Cj (u) 0 0 0 0 0

0 Cj (u) 0 0 0 0

0 0 Sj (u) 0 0 0G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

HB =
0 0 0 Cj (u) 0 0

, (47)

0 0 0 0 Cj (u) 0

0 0 0 0 0 Sj (u)

and B is the 6×8 matrix which is a function of s, which is shown in the Appendix.
The stress resultants and stress couples, for the thickness h, are related to the

strains and curvature changes at the middle surface through the elastic matrix D.
The stress resultant vector is given by

N=De, (48)

where

N= {Ns , Nu , Nsu , Ms , Mu , Msu}T, (49)
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in which Ns , Nu and Nsu are the stress resultants and Ms , Mu and Msu are the stress
couples. For shells with a homogeneous elastic Hookean material, the elastic
matrix is given by

C nC 0 0 0 0

nC C 0 0 0 0

0 0 (1− n)C/2 0 0 0G
G

G

G

G

K

k

G
G

G

G

G

L

l

D=
0 0 0 D nD 0

, (50)

0 0 0 nD D 0

0 0 0 0 0 (1− n)D/2

where E and n are Young’s modulus and Poisson’s ratio, respectively;
D=Eh3/12(1− n2) is the bending stiffness and C=Eh/(1− n2) is the extensional
stiffness.

5. EQUATION OF MOTION IN MATRIX VECTOR FORM

The equation of motion for free vibration can be derived by using Hamilton’s
principle which is described by

d g
t1

t0

(T−U) dt=0, (51)

where T and U are the total kinetic and strain energies; t0 and t1 are arbitrary time.
Suppose that a shell structure is discretized into N conical ring elements. Since the
total kinetic and strain energies are the summation of those of the N elements and
the variation operator d is independent of the integration, equation (51) can be
rewritten as

s
N

e=1 g
t1

t0

(dTe − dUe ) dt=0, (52)

where Te and Ue are the element kinetic and strain energies.
The variation of the kinetic energy of an element is given by

dTe =gV

ru̇T du̇ dV, (53)

where V and r are the volume and density of an element, respectively. Integrating
equation (53) by parts with respect to time t, equation (53) is written as

g
t1

t0

dTe dt=−g
t1

t0
gV

rüT du dV dt. (54)
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Substitution of equation (32) into equation (54) leads to

g
t1

t0

dTe dt=−g
t1

t0

dU� T
e MeU� e dt, (55)

where Me is the 8×8 symmetric element mass matrix given by

Me =gV

TeSTHSrHSSTT
e dV. (56)

On the other hand, the variation of the element strain energy Ue is given by

dUe =gA

NT de dA, (57)

where A is the area of the middle surface for the ring element. Using equations
(45) and (48), equation (57) may be rewritten as

dUe = dU� T
e KeU� e , (58)

where Ke is the 8×8 symmetric element stiffness matrix given by

Ke =gA

TeBTHBDHBBTT
e dA (59)

Substituting equations (55) and (58) into equation (52), equation (52) becomes

s
N

e=1 g
t1

t0

dU� T
e (MeU�

..
e +KeU� e ) dt=0. (60)

Since equation (60) is valid for arbitrary variation dU� T
e , vanishing the coefficient

of dU� T
e leads to the global matrix vector equation:

MU�
..

+KU� = 0, (61)

where M and K are the 4(N+1)×4(N+1) global mass and stiffness matrices,
respectively, and U� is the 4(N+1)×1 displacement vector in the global
co-ordinate system, given by

U� = {ū1, v1, w̄1, (1w/1s)1, ū2, v2, w̄2, (1w/1s)2, . . . , ūN+1, vN+1, w̄N+1,

(1w/1s)N+1}T. (62)

The boundary conditions may be imposed on equation (61) in the sense of the
penalty method.
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6. COMPUTATION OF THE ELEMENT MASS AND STIFFNESS MATRICES

Consider first the computation of the element mass matrix for the conical ring
element with slight deviation. Note that Te is independent of u and s, S is a
function of s, and Hs is a function of u. When introducing a parametric co-ordinate
p defined by

p=2s/L−1, (63)

S becomes a function of p. Then, the element mass matrix of equation (56) may
be expressed as

Me = 1
2RLTe0g

1

−1

STGMS dp1TT
e , (64)

where

GM = prhI−(rh− raha )(AI−BTM ), (65)

in which I is the 4×4 identity matrix; ra and ha are the density and thickness of
the deviated portion of the ring while r and h are the density and thickness of the
other portion, respectively (see Figure 2);

1 0 0 0

0 −1 0 0
G
G

G

K

k

G
G

G

L

l

TM =
0 0 1 0

, A= 1
2Du, B=[(−1)b/2j] sin jDu. (64–66)

0 0 0 1

Similarly, since B is a function of s or p and HB is a function of u, the element
stiffness matrix can be written as

Ke = 1
2RLTe0g

1

−1

BTGKB dp1TT
e , (67)

where

GK = pD−(AI+BTK )(D−Da ) (68)

in which I is the 6×6 identity matrix and Da is the elastic matrix for the deviated
portion;

1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0G
G

G

G

G

K

k

G
G

G

G

G

L

l

TK =
0 0 0 1 0 0

, (69)

0 0 0 0 1 0

0 0 0 0 0 −1
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The Gaussian quadrature is used to integrate STGMS and BTGKB with respect
to p from −1 to 1. Note that the elements in S and B are polynomials of p with
the highest degree 3. If the thickness h is approximated by a linear polynomial of
s or p, the elements in D become polynomials of p with degree 3. Since the highest
degrees of the elements in STGMS and BTGKB are 7 and 9, respectively, the 4-point
Gaussian quadrature gives exact values of integration for Me and Ke .

7. COMPUTATION OF NATURAL FREQUENCIES AND MODES

Natural frequencies and mode shapes of a nearly axisymmetric shell structure
are obtained from the eigenproblem, corresponding to equation (61), that is given
by

(K−v2
n M)X= 0 (70)

where vn is the natural frequency and X is the eigenvector.
To demonstrate the computational efficiency of the proposed approach, let us

consider the nearly axisymmetric shell structure of a Korean bell as an example.
The material properties of the bell are r=8800 kg/m3, E=100 GN/m2 and
n=0·33. The discretized model for the FEM is shown in Figure 3 where the
numbers are element numbers of the ring elements. All the elements are
axisymmetric except elements 15, 16 and 17. These three elements have the local
deviations which are defined by Du=20° and ha =1·1h as shown in Figure 2. Since
element i is bounded by nodal circles i and i+1, the element–node connectivity
is given in Table 1 where hi and hi+1 represent the thickness at nodal circles i and
i+1, respectively, and gh is defined as gh =(ha − h)/h. Table 2 shows the
co-ordinates of the nodal circles. The fixed boundary conditions are imposed on
nodal circle 1 so that all the displacements are equal to zero at the circle.

The computation results from the proposed method are summarized and
compared to those from a commercial code ANSYS [11] in Table 3 which presents

Figure 3. Discretized model of the nearly axisymmetric shell structure.
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T 1

Element-node connectivity, element thickness, and deviations from symmetry

Nodal Circle
Element ZXCXXV
no. (i) i i+1 hi (cm) hi+1 (cm) gh (%) Du (deg)

1 1 2 11·50 11·50 0·00 0·00
2 2 3 11·50 11·70 0·00 0·00
3 3 4 11·70 11·50 0·00 0·00
4 4 5 11·50 11·30 0·00 0·00
5 5 6 11·30 11·20 0·00 0·00
6 6 7 11·20 11·28 0·00 0·00
7 7 8 11·28 11·98 0·00 0·00
8 8 9 11·98 12·90 0·00 0·00
9 9 10 12·90 13·51 0·00 0·00

10 10 11 13·51 14·21 0·00 0·00
11 11 12 14·21 14·76 0·00 0·00
12 12 13 14·76 15·11 0·00 0·00
13 13 14 15·11 15·68 0·00 0·00
14 14 15 15·68 16·15 0·00 0·00
15 15 16 16·15 16·78 10·0 20·0
16 16 17 16·78 16·67 10·0 20·0
17 17 18 16·67 16·80 10·0 20·0
18 18 19 16·80 17·37 0·00 0·00
19 19 20 17·37 19·48 0·00 0·00
20 20 21 19·48 20·12 0·00 0·00

the lowest eight natural frequencies except the natural frequencies corresponding
to the rigid-body modes. In Table 3, the mode (m, n) represents a mode which has
m nodal points along the circumference of the shell and n+1 nodal points along
the meridian of the shell. See Figure 4 for the mode shapes. Note that m=2j where
j is the harmonic number shown in equations (1–3). It is also noted that since the

T 2

Co-ordinates of the nodal circles

Nodal circle i ri (cm) Yi (cm) Nodal circle i ri (cm) Yi (cm)

1 0·00 334·25 12 113·55 181·50
2 17·90 333·95 13 115·75 161·40
3 35·60 332·45 14 117·25 141·20
4 59·20 328·75 15 118·20 121·00
5 81·40 322·85 16 118·50 100·90
6 88·30 302·60 17 118·15 80·70
7 94·25 282·40 18 117·75 60·50
8 99·30 262·20 19 117·30 40·30
9 103·75 242·20 20 115·75 20·20

10 107·55 221·90 21 113·60 0·00
11 110·90 201·70
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T 3

Computed natural frequencies from the proposed method and ANSYS (Hz)

Mode (4, 0) Mode (6, 0) Mode (4, 1) Mode (6, 1)
Number of ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV
elements b=0 b=1 b=0 b=1 b=0 b=1 b=0 b=1

10 59·18 59·71 162·28 164·84 173·12 173·47 210·33 210·37
20 60·26 60·58 165·89 166·56 171·02 171·19 210·86 210·92
40 60·66 60·89 166·30 166·55 170·66 170·81 211·33 211·54

ANSYS 60·71 60·82 165·96 166·48 174·94 175·41 223·75 224·29

modes (2, 0) and (2, 1) correspond to the rigid-body modes, the natural frequencies
for those modes are equal to zero theoretically. Actual computation shows that
these frequencies are equal to 0·03 and 0·06. However, because the rigid-body
modes are not important, they are omitted in Table 3. For the given values of
m and n, each mode (m, n) is separated into the symmetric mode (b=0) and
asymmetric mode (b=1).

The natural frequencies computed using 10, 20 and 40 elements show the
convergence of the method and they are close to those computed by ANSYS.
Considering the deviation from axisymmetry for the given structure, the FEM
model for ANSYS has 1446 three-dimensional structural solid elements named by
SOLID45; however, the model for the proposed method has at most 40 ring
elements. On the other hand, the computation time is 699·37 s when ANSYS runs
on a workstation while the computation time is only 3·15 and 5·61 s with 20 and
40 elements respectively when the proposed FEM program runs on a 586 personal
computer. In practice, the frequencies corresponding to the mode (4, 0) are

Figure 4. Mode shapes of the nearly axisymmetric shell structure: (a) Mode (4, 0); (b) mode (4, 1);
(c) mode (6, 0); (d) mode (6, 1).
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important in the design of Korean bells because the fundamental beat frequencies
are dominant in determining sound quality. In addition, iteration of computation
for the fundamental frequencies is required in the design stage of Korean bells;
therefore, the proposed approach is very useful because a large amount of compu-
tation time and cost can be saved compared to that of commercial FEM codes.

The mode shapes of the above structure are plotted in Figure 4. The modes
denoted by b=0 and b=1 are the symmetric and asymmetric modes,
respectively. The hatched parts represent the added mass, i.e., the deviation from
axisymmetry of the structure. The circumferential mode patterns show that the
deviated part is located on the anti-node of the symmetric mode while it is located
on the node of the asymmetric mode. Finally, one can see that modes (4, 1) and
(6, 1) have the meridian mode patterns which pass the deviation part.

8. CONCLUSIONS

The new conical ring finite element with local deviation is developed, based upon
the fact that the deviation generates the beat frequencies and the fact that, for each
harmonic number j, the asymmetric mode shape rotates with p/2j from the
symmetric mode shape. The developed element is applied to the FEM program
which computes natural frequencies and mode shapes for the nearly axisymmetric
shell structure. The example of the Korean bell shows that the finite element
method using the proposed elements can save a great deal of computation time
and cost. The present finite element analysis may be applied to welded cylinders
and pressure vessels.
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A
P
P
E

N
D

IX

(L− s)/L 0 0 0 s/L 0 0 0
0 (L− s)/L 0 0 0 s/L 0 0

G
G

G

G

G

K

k

G
G

G

G

G

L

l

S= 0 0 (L− s)2(L+2s)/L3 (L− s)2s/L2 0 0 (3L−2s)s2/L3 −(L− s)s2/L2

0 0 −6(L− s)s/L3 (L−3s)(L− s)/L2 0 0 6(L− s)s/L3 −(2L−3s)s/L2
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b12 = b13 = b14 = b16 = b17 = b18 = b33 = b34 = b37 = b38 =0,

b41 = b42 = b45 = b46 = b51 = b55 =0,

b11 =−b15 =−1/L, b21 = (sin f/RL)(L− s),
b22 =−b31 = (j/RL)(L− s),

b23 = (cos f/RL3)(L− s)2(L+2s), b24 = (cos f/RL2)(L− s)2s,

b25 = (sin f/RL)s,

b26 =−b35 = (j/RL)s, b27 = (cos f/RL3)(3L−2s)s2,

b28 =−(cos f/RL2)(L− s)s2,

b32 =−(sin f/RL)(L− s)−1/L, b36 =−(sin f/RL)s+1/L,

b43 =−b47 =−(6/L3)(L−2s), b44 = (2/L2)(2L−3s), b48 = (2/L2)(L−3s),

b52 =4b61 = ( j cos f/R2L)(L− s),

b53 = (6 sin f/RL3)(L− s)s+( j2/R2L3)(L− s)2(L+2s),

b54 = (sin f/RL2)(L−3s)(L− s)+ ( j2/R2L2)(L− s)2s,

b56 =4b65 = ( j cos f/R2L)s,

b57 =−(6 sin f/RL3)(L− s)s+( j2/R2L3)(3L−2s)s2,

b58 = (sin f/RL2)(2L−3s)s−( j2/R2L2)(L− s)s2,

b62 =−(3 cos f/4RL)[(sin f/R)(L− s)+1],

b63 =−( j sin f/R2L3)(L− s)2(L+2s)− (6j/RL3)(L− s)s,

b64 =−( j sin f/R2L2)(L− s)2s+( j/RL2)(L−3s)(L− s),

b66 = (3 cos f/4RL)[−(sin f/R)s+1],

b67 =−( j sin f/R2L3)(3L−2s)s2 + (6j/RL3)(L− s)s,

b68 = ( j sin f/R2L2)(L− s)s2 − ( j/RL2)(2L−3s)s.
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